A novel liquid biopsy assay with 88% detection rate of genomic alterations across CNS tumors

BACKGROUND

Non-invasive detection of challenging tumors like those in the CNS is needed

Genomic assessment of central nervous system (CNS) tumors, including glioblastomas (GBM), is necessary to inform clinical decision making, especially for genes which have prognostic and treatment implications such ad *IDH1/2*.

Tissue biopsy remains the current standard for histological and genomic analyses, however there are limitations:

- **Tumor location** renders sample extraction infeasible, or when available, limited in size
- High heterogeneity in tumors such as GBMs makes it difficult to fully capture the diversity of the genomic profile

Plasma-based liquid biopsies have emerged as a complement or alternative to tissue. However, ctDNA from CNS tumors can be difficult to detect due to:

- Low ctDNA shed rates inherent to CNS tumor biology
- Blood brain barrier impedes ctDNA permeability into peripheral blood

These factors make CNS tumor-derived ctDNA difficult to detect, with current literature suggesting 27 to 55% detection for <u>any alteration</u>, including variants of uncertain significance (VUS):

Study	Patients (n)	ctDNA Detection Rate*
Schwaederle et al. PMID: 26848768	33	27%
Piccioni et al. PMID: 30855176	222	55%
Zill et al. PMID: 29776953	107	51%
Bagley et al. PMID: 31666247	20	55%

Table 1. Studies reporting ctDNA sequenced by next-generation
 sequencing (NGS) from plasma obtained from GBM patients. *Includes all alterations, including actionable, pathogenic and VUS.

Currently, there are no assays on the market approved for use in CNS tumors because of this poor detection rate. Therefore, there is unmet clinical need for a highly sensitive liquid biopsy assay to genomically profile CNS tumors to overcome the above limitations.

REFERENCES

- 1. Tsao, D.S., Silas, S., Landry, B.P. et al. A novel high-throughput molecular counting method with single base-pair resolution enables accurate single-gene NIPT. Sci Rep 9, 14382 (2019). https://doi.org/10.1038/s41598-019-50378-8
- 2. Deveson IW, Gong B, Lai K, et al. Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nat Biotechnol. 2021;39(9):1115-1128. doi:10.1038/s41587-021-00857-z
- 3. LOD defined as lowest concentration of analyte that can be detected >95% probability.

METHODS

Highly sensitive, plasma-based genomic profiling assay

Northstar Select is a plasma-based, comprehensive genomic profiling test that leverages Quantitative Counting Template[™] (QCT) technology¹, optimized chemistry and panel design, as well as bioinformatics innovations to increase sensitivity. From January to December 2023, 62 patients with diagnosed CNS tumors were submitted commercially to BillionToOne for Northstar Select analysis.

0.5%			
0.4%			
0.3%	Other Common Assays	0.25% - 0.50%²	• ••••
0.2%	*•NORTHSTAR	0.13% - 0.16% ³	lower level of detection
0.1%			

Figure 1: Cited single-nucleotide variant (SNV) limits of detection (LODs) of common assays in the market range from 0.25% to 0.50% VAF² •. Northstar Select LOD ranges from 0.13-0.16% VAF³ \bullet .

AKT1	CCNE1	EZH2	JAK2	M	/C	
AKT2	CD274 (PD -L1)	FANCA	JAK2 JAK3	NF		
ALK	CDH1	FBXW7	KIT		TCH1	
APC	CDK12	FGFR1	KRAS		PM1	
AR	CDK4	FGFR2	MAP2		AS	
ARAF	CDK6	FGFR3	(MEK1)		RK1	
ARID1A	CDKN2A	FGFR4	MAP2	K2 PA	LB2	
A <i>TIM</i>	CDKN2B	GATA3	(MEK2)	PD	OGFRA	
BRAF	CHEK2	GNA11	MET	PI	K3CA	
BRCA1	CTNNB1	GNAQ	MLH1	PN	1S2	
BRCA2	DDR2	GNAS	MPL	PT	ΈN	
BRIP1	EGFR	HRAS	MSH2	? PT	PN11	
CCND1	ERBB2 (HER2)	IDH1	MSHE	5 RA	D51C	
CCND2	ESR1	IDH2	MTOF	R RA	D51D	
			_	Fusie		
	lifications 19				S 9 genes	
AR	ERBB2	MET		ALK	NTRK1	
AR BRAF	ERBB2 ESR1	MET MYC		ALK BRAF	NTRK1 NTRK2	
- BRAF CCNE1	ERBB2 ESR1 FGFR1	MET MYC PDGFRA		ALK BRAF FGFR2	NTRK1 NTRK2 NTRK3	
AR BRAF CCNE1 CD274 (PD -L1)	ERBB2 ESR1 FGFR1 FGFR2	MET MYC PDGFRA PIK3CA		ALK BRAF	NTRK1 NTRK2 NTRK3 RET	
- BRAF CCNE1 CD274 (PD -L1) CDK4	ERBB2 ESR1 FGFR1	MET MYC PDGFRA		ALK BRAF FGFR2	NTRK1 NTRK2 NTRK3	
- BRAF CCNE1 CD274 (PD -L1) CDK4 CDK6	ERBB2 ESR1 FGFR1 FGFR2 KIT	MET MYC PDGFRA PIK3CA RAF1		ALK BRAF FGFR2	NTRK1 NTRK2 NTRK3 RET	
AR BRAF CCNE1 CD274 (PD-L1) CDK4 CDK6 EGFR	ERBB2 ESR1 FGFR1 FGFR2 KIT KRAS	MET MYC PDGFRA PIK3CA RAF1		ALK BRAF FGFR2	NTRK1 NTRK2 NTRK3 RET	
AR BRAF CCNE1 CD274 (PD -L1) CDK4 CDK6 EGFR CNAs: Loss	ERBB2 ESR1 FGFR1 FGFR2 KIT KRAS	MET MYC PDGFRA PIK3CA RAF1		ALK BRAF FGFR2 FGFR3	NTRK1 NTRK2 NTRK3 RET ROS1	
CNAs: Amp AR BRAF CCNE1 CD274 (PD -L1) CDK4 CDK6 EGFR CNAs: Loss ATM BRCA1	ERBB2 ESR1 FGFR1 FGFR2 KIT KRAS	MET MYC PDGFRA PIK3CA RAF1		ALK BRAF FGFR2	NTRK1 NTRK2 NTRK3 RET ROS1	

 Table 2. Northstar Select gene panel

DATA

Increased sensitivity results in high detection rate of clinically actionable alterations in CNS tumors

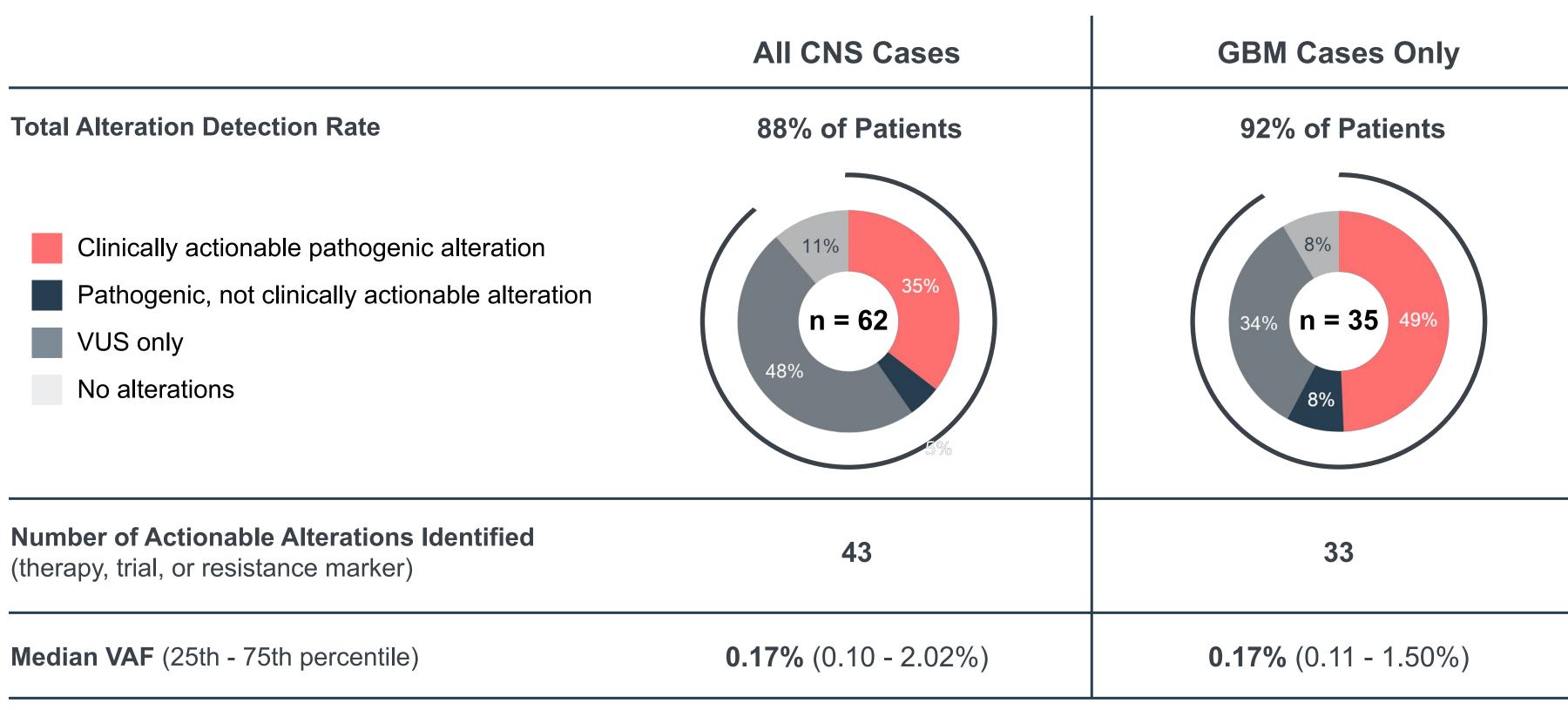
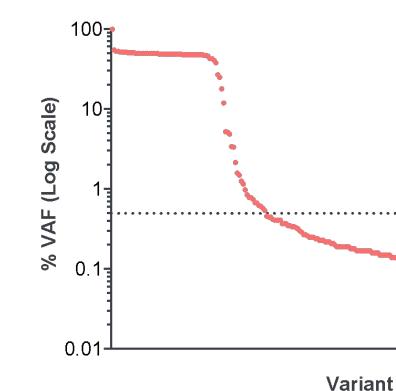



Figure 2: Summary of alterations detected by Northstar Select in CNS tumors

CLINICAL CASE STUDIES

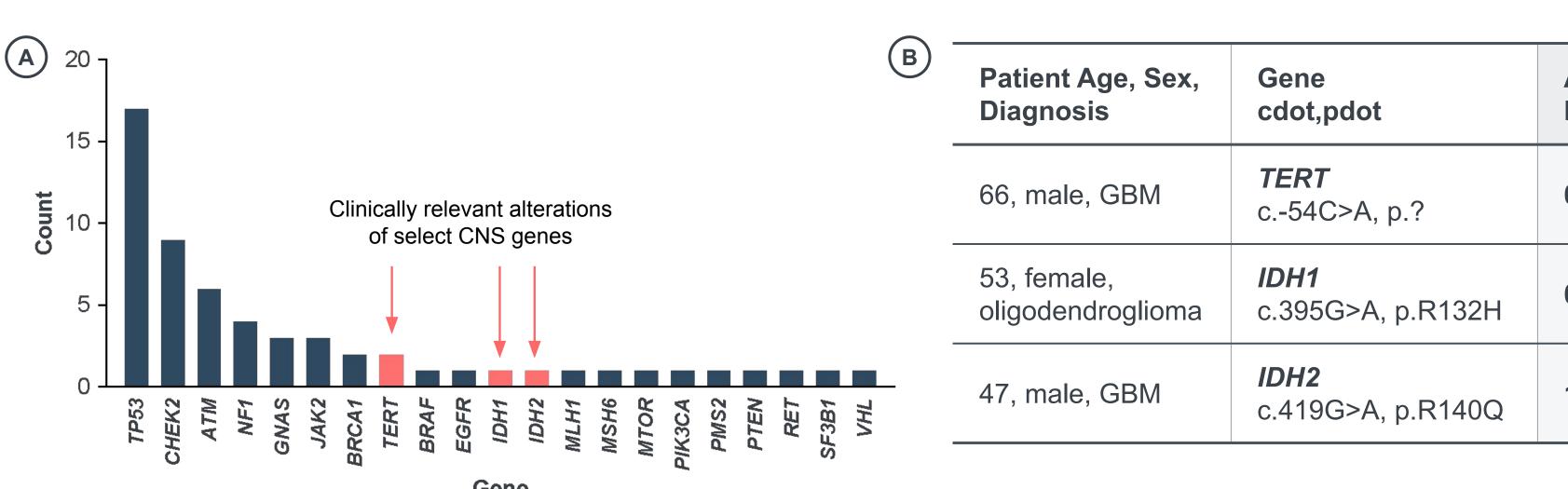


Figure 4. (A) Pathogenic / likely pathogenic alterations detected by Northstar Select (B) Patient-level details on clinically relevant alterations of 3 select genes: TERT and IDH1/2.

Matthew G. Varga^{*}, Christian Klosowski^{*}, Xavier Bower^{*}, Naomi Searle^{*}, David Tsao^{*}, Gary Palmer^{*} and Santosh Kesari^{**}

BillionToOne, Inc., Menlo Park, CA ** Pacific Neuroscience Institute, Santa Monica, CA

(B) Allele Fractions of Clinically Actionable Alterations Only

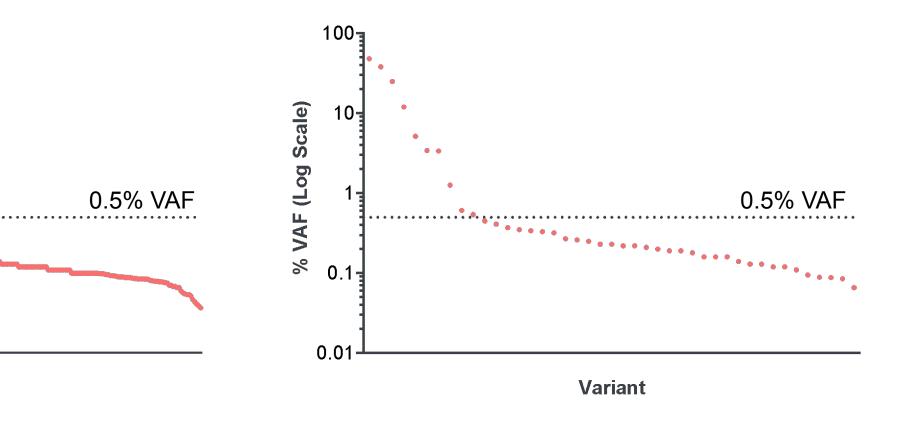


Figure 3. (A) Distribution of all variants detected in 62 CNS patient cases (B) Distribution of clinically actionable alterations only among all 62 CNS patient cases.

Clinically informative alterations in select genes

Allele Fraction

0.21%

0.088%

1.26%

RESULTS

88% detection rate in CNS tumors, 91% in GBMs only

In this study, Northstar Select's detection rate of any alteration was 88% in patients with CNS tumors and 92% among the GBM patients.

When limiting analysis to clinically actionable alterations (i.e. there is a drug, treatment implication, or clinical trial available), 36% of cases had at least one alteration detected, and in GBMs, this number increased to 49% of cases.

The majority of the alterations found were below 0.5% VAF

The assay's uniquely low LOD of 0.13% to 0.16% VAF, which is below the 0.17% median VAF demonstrated across CNS tumors in this study, enabled a high detection rate among patients with CNS tumors.

CONCLUSIONS

Higher detection rates uncover more low-abundance alterations

Current literature indicates an unmet clinical need for a highly sensitive liquid biopsy assay to determine the genomic landscape of CNS tumors and to aid clinical decision making.

Northstar Select has a detection rate of 88.7% in all cases and 91.4% in GBMs, nearly doubling current rates.

Nearly 50% of detected alterations in GBMs were actionable, supporting the clinical utility of Northstar Select to inform clinical decisions either as a complement to imaging and tissue analyses, or independently when tissue biopsies are infeasible.

These data further suggest that the clinical utility of Northstar Select may be expanded into metastatic brain disease and other low ctDNA shedding tumors.